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The London ground-state energy formula as a function of number density for a system of identical boson
hard spheres, corrected for the reduced mass of a pair of particles in a “sphere-of-influence” picture, and
generalized to fermion hard-sphere systems with two and four intrinsic degrees of freedom, has a double-pole
at the ultimate regular �or periodic, e.g., face-centered-cubic� close-packing density usually associated with a
crystalline branch. Improved fluid branches are constructed based upon exact, field-theoretic perturbation-
theory low-density expansions for many-boson and many-fermion systems, extrapolated to intermediate den-
sities via Padé and other approximants, but whose ultimate density is irregular or random closest close-packing
as suggested in studies of a classical system of hard spheres. Results show substantially improved agreement
with the best available Green-function Monte Carlo and diffusion Monte Carlo simulations for bosons, as well
as with ladder, variational Fermi hypernetted chain, and so-called L-expansion data for two-component
fermions.
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I. INTRODUCTION

An analytical formula for the ground-state energy E of an
N-hard-sphere-boson system of volume � for all particle-
number densities ��N /� was proposed by London �1� as

E/N =
2��2c

m

1

��−1/3 − �0
−1/3�2

1

��−1/3 + b�0
−1/3�

, �1�

where m is the particle mass, c is the hard-sphere diameter
and the constant b equals 25/2 /�−1. Here, �0��2/c3 is the
assumed ultimate regular �or periodic� close-packing density
at which a system of identical classical hard spheres close-
pack in a primitive-hexagonal arrangement, e.g., face-
centered-cubic or hexagonal. As remarked by Rogers �2�,
this is what “many mathematicians believe and all physicists
know” to be the case. However, the Kepler 1611 conjecture
�3� that �0��2/c3 is the ultimate packing density for iden-
tical hard spheres seems to be approaching theorem status �4�
after many attempts of proof.

The justification given for Eq. �1� is that it reduces
smoothly to limiting expressions at both low and high den-
sities, namely

E/N →
�→0

�2��2/m��c , �2�

E/N →
�→�0

A��2/2m���−1/3 − �0
−1/3�−2, �3�

but gives no indication of a “freezing” or Kirkwood �5�
phase transition at some number density � between 0 and �0.
Here A=�2 /21/3�7.8335 is a constant called the residue of
the second-order �or double� pole at close packing. Using the
polyhedron cell method suggested in Ref. �6�, the value of A

has been predicted �7� theoretically to lie within the rigorous
range

1.63 � A � 27.0. �4�

The low-density leading term �2� is the celebrated Lenz �8�
term, calculated by him as the leading correction to the en-
ergy arising from an “excluded volume” effect. The Lenz
term has finally been rigorously established �9�. The limit �3�
comes from the lowest Schrödinger equation eigenvalue of a
particle in a spherical cavity, and is just the kinetic energy of
a point particle of mass m inside the cavity of radius r−c,
where r is the average separation between two neighboring
hard spheres and r= ��2/��1/3 by assuming a primitive-
hexagonal packing arrangement for the cavities.

More recently it was found �10�, however, that the argu-
ments leading to the high-density limit of the original �1�
�boson� London Eq. �1� are flawed by a fundamental error:
the spherical cavity of radius r−c alluded to above in reality
refers to the “sphere of influence” of two particles. Thus the
particle mass used in obtaining Eq. �3� should refer to the
reduced mass m /2 of the pair. This yields the constant

b � 23/2/� − 1 �5�

instead of the constant 25/2 /�−1 given by London for Eq.
�1�. The result �1� with Eq. �5� is designated the modified
London (ML) equation. It continues to satisfy Eq. �2� as this
is independent of the constant b but the residue A in Eq. �3�
now becomes 22/3�2�15.667 instead of the previous
�2 /21/3�7.8335 associated with the original London equa-
tion, and fully agrees with the empirical residue of 15.7±0.6,
extracted by Cole �11� from high-pressure crystalline-branch
data in 3He, 4He, H2, and D2 systems. Moreover, this ML
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equation exhibits dramatically better agreement than the
original London �L� equation with Green-function Monte
Carlo �GFMC� �12� computer-simulation data points for both
fluid and crystalline branches of the boson hard-sphere sys-
tem.

A generalized London equation has also been proposed
�13� for N-fermion hard-sphere systems with � intrinsic de-
grees of freedom for each fermion. Here �=2 for, say, liquid
3He or neutron matter, both constituent fermions of which
have spin 1/2, and �=4 for nuclear matter consisting of both
neutrons and protons of spin 1/2. As � is essentially the
maximum occupation in a given single-particle quantum
state, it can be taken as infinite in the case of bosons. For
fermions, two differences appear with respect to the boson
London formula: �i� unlike the boson case, the ground-state
kinetic energy for fermions is nonzero and is added as a
well-known �14� �-dependent leading term; and �ii� the con-
stant b is allowed to be � dependent, being replaced by

b���� = ��� − 1�/���b + 1� − 1, �6�

which clearly approaches b as �→�. The latter form also
ensures a �-independent energy at close-packing where,
since the spheres can be labeled so that indistinguishability
as well as particle statistics disappears, as expected in this
classical limit. Substitution of b� for the constant b in Eq. �1�
gives a generalized form of the modified London equation
�ML��,

E/N = C��2/3

+ �� − 1

�
	2��2c

m

1

��−1/3 − �0
−1/3�2

1

��−1/3 + b�����0
−1/3�

�7�

with

C� �
3�2

10m
�6�2

�
	2/3

→
�→�

0. �8�

For �→�, b���→b according to Eq. �6�, and Eq. �7� goes
over into the boson case �1� because C� vanishes in this limit.
The low-density limit of Eq. �7� is

E/N →
�→0

C��2/3 + �� − 1

�
	2��2

m
�c , �9�

where the second term on the right-hand side is the Lenz
term for �-component fermions in three dimensions. On the
other hand, for �→�0��2/c3 one sees that Eq. �7� reduces
to Eq. �3� as it should. In other words, hard-sphere fermions,
bosons, or “boltzons” must all close-pack regularly at the
same density. From this it follows that the residue for bosons
or fermions is the same and equal to 22/3�2�15.667, in ex-
cellent agreement with the empirical Ref. �11� value of
15.7±0.6.

For bosons, in addition to the Lenz term �2� for the low-
density fluid branch, several higher-order corrections to the
ground-state energy per particle have been derived using
quantum field-theoretic many-boson perturbation theory
�15,16�. They give

E/N =
2��2�c

m

1 + C1��c3�1/2 + C2�c3 ln��c3�

+ C3�c3 + o��c3�� �10�

for �c3�1, where C1=128/15�� and C2=8�4� /3−�3�, but
C3 is an as yet unknown constant. Here, c denotes the
S-wave scattering length for a general potential; for a hard-
core potential it is just the hard-sphere diameter. The series is
clearly not a pure power series expansion, and is at best an
asymptotic series.

Similarly, for an N-fermion hard-sphere system the corre-
sponding series is �17�

E/N =
3

5

�2kF
2

2m

1 + C1�kFc� + C2�kFc�2

+ �C3r0/2c + C4A1�0�/c3 + C5��kFc�3 + C6�kFc�4ln�kFc�

+ �C7r0/2c + C8A0��0�/c3 + C9��kFc�4 + o�kFc�4� �11�

for kFc�1 and where the Cj �j=1,2 , . . . ,9� are dimension-
less coefficients depending on �; they are given in Ref. �18�
for �=2 and �=4. The Fermi momentum �kF is defined
through the fermion-number density

� � N/� = �kF
3/6�2 �12�

with � the system volume, so that the Lenz term expressed
in terms of � is identical to the boson Lenz term apart from
a factor of ��−1� /� which is the average number of fermions
the Pauli principle allows a given fermion to interact with at
the shortest possible range.

Unfortunately, both low-density expansions �10� and �11�
lack accuracy at moderate to high densities, including the
saturation �or equilibrium, zero-pressure� densities of liquid
4He ��=�� �19� and liquid 3He ��=2� or nuclear matter ��
=4�. However, one can extrapolate the series for hard-sphere
systems to physical and even to close-packing densities
through the use of Padé �20� and/or a modest extension of
these called the “tailing” �21� approximants. The so-called
quantum thermodynamic �or van der Waals� perturbation
theory �QTPT� �22,23� has provided fairly accurate represen-
tations of the fluid branch of the equation of state of quantum
hard-sphere systems �24�, even beyond freezing �or Kirk-
wood� phase transition densities, but without sufficient cred-
ibility as one approaches close packing. This is clear since
one does not possess a single ground-state energy function
with implicit information of both fluid and crystalline
branches, with presumably different close-packing ultimate
densities.

In Sec. II we discuss the double �or second-order� pole
behavior for the equation-of-state fluid branch conceivably
ending at random closest close-packing, instead of the regu-
lar close-packing at which the crystalline branch terminates;
in Secs. III and IV we construct analytical expressions for
the fluid branches for hard-sphere bosons and fermions, re-
spectively. Section V gives our conclusions.

II. DOUBLE-POLE CONDITIONS AT CLOSE PACKING

We shall assume that the fluid branch of the hard-sphere
equation of state will terminate not at the regular close-
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packing density �0 but rather at the random closest close
packing �rccp�, sometimes called the Bernal, density �rccp �or
“maximally random jammed” packing �25��. Its value was
originally determined empirically �26� with actual ball-
bearing packings. Near the density �rccp we expect, based on
Eq. �3�, that the energy for a hard-sphere boson or fermion
gas has the following behavior:

E/N →
�→�rccp

A��2/2m���−1/3 − �rccp
−1/3�−2, �13�

with A the residue which could be different for each system.
Random close-packing densities range �27� from about
0.06�0 to 0.86�0��rccp.

The derivative of Eq. �13� with respect to � then tends
asymptotically to

d�E/N�
d�

→
�→�rccp

A�2/3���2/2m�
��−1/3 − �rccp

−1/3�3�4/3 �14�

while

d ln�E/N�
d�

→
�→�rccp

2/3

��−1/3 − �rccp
−1/3��4/3 �15�

is residue independent. We shall assume that A is the same
for boson as for fermion hard spheres and that their rccp
density is likewise identical since at closest close-packing
the particles become localized by definition, enabling one to
formally label each particle; this makes them distinguishable
thus rendering �quantum� statistics irrelevant. Note that the
pressure P=�2�d�E /N� /d�� from Eq. �14� also diverges as
�→�rccp, as expected.

III. BOSON HARD-SPHERE FLUID

In order to extrapolate the low-density series �10� to
higher densities we start by writing it as

E/N =
2��2

m
�ce0�x� , �16�

where x���c3�1/2 and

e0�x� � 1 + C1x + C2x2 ln x2 + C3x2 + O�x3 ln x2� �17�

for x�1. Alternatively, one can rewrite this series as

e0
−1/2�x� = 1 + K1x + K2x2 ln x2 + K3x2 + O�x3 ln x2� ,

�18�

where the Ki’s are expressible in terms of the Ci’s. As C3 is
to date unknown, consequently K3 is also unknown. Values
of the Ci’s and Ki’s are given in Table I. We analyze the
series e0

−1/2�x� instead of the series e0�x� to ensure that any
zeros in its extrapolants, say 	0

−1/2�x�, are double �or second-
order� poles in the energy as one expects at any kind of close
packing. The extrapolants are generated as a quotient of two
polynomials such that on expansion one recovers the first
terms of the original series. Series �18� with three terms be-
yond unity has 12 extrapolants correctly generated in Ref.
�28� but fitted there to erroneous values �i.e., to one-half the
correct values� GFMC data points �12�. Adjusting various

extrapolants �24� to best fit the four known GFMC data
points ensures a good value for the unknown coefficient K3
in Eq. �18�. The extrapolant designated “XI �bosons�” in Fig.
2 of Ref. �24� had the least mean-square deviation with re-
spect to the four GFMC fluid-branch data points. Therefore
we adopt it as our best initial extrapolant. The ground-state
energy per particle for boson hard spheres was thus repre-
sented �symbol �� by

E/N �
2��2

m
�c	0��� �19�

with K3�−27.956. However, as diffusion Monte Carlo
�DMC� calculations became available �29� spanning a wider
range of densities in the fluid region than GFMC data, we
realized that although our expression XI �x� in Eq. �17� of
Ref. �24� agrees well with DMC and GFMC data around the
freezing transition, its disagreement with the DMC data at
low to intermediate densities suggested the possibility of im-
proving the extrapolant. As will be seen, the new extrapolant
	0

−1/2 predicts a random closet close-packing �rccp� density
�rccp /�0�0.776 which is only about 10% below the classical
hard-spheres empirical �26� rccp value�0.86 mentioned be-
fore and also assumed to be the ultimate rccp density for
quantum hard-sphere fluids.

In order to improve the fluid-branch expression of Ref.
�24� for low to intermediate densities we use the two double-
pole conditions �13� and �14� which lead to the following
conditions on the extrapolant 	0�x� to be used in Eq. �19�
namely

	0 =
mE

N2��2�c
→

�→�rccp

A

4��c
��−1/3 − �rccp

−1/3�−2.

This is equivalent to

	0
−1/2��� →

�→�rccp

�A/4��c�−1/2��−1/3 − �rccp
−1/3� →

�→�rccp

0. �20�

The condition �14� gives

d�	0
−1/2�

d�
→

�→�rccp

−
1

3
�A/4�c�−1/2�rccp

−5/6. �21�

Strictly, any log term should be accompanied by a constant,
if known, because the scaling of � by c3 is arbitrary. We thus
propose the representation of e0�x� in Eq. �17� as given by

e0
−1/2�x� �

1 + K1x + 
x2 + �x3

1 − K2x2 ln x2 + �x2 � 	0B
−1/2�x� , �22�

where �, 
, and � are to be determined from Eqs. �20� and
�21� and by fitting both DMC �29� and GFMC ��12�, Table I�

TABLE I. Coefficients Ci and Ki for bosons appearing in Eqs.
�17� and �18�, respectively. Numbers in quotation marks are deter-
mined as indicated in text.

Bosons ��=�� i=1 2 3

Ci 4.81441778 19.65391518 “73.296”

Ki −2.40720889 −9.826957589 “−27.956”
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data. In this approximant the terms in x2 ln x and x2 are kept
together. Condition �20� applied to Eq. �22� gives

1 + K1xrccp + 
xrccp
2 + �xrccp

3 = 0. �23�

The second condition �21� can be rewritten as

�d�	0B
−1/2�

dx

dx

d�
�

x=xrccp

=
K1 + 2
xrccp + 3�xrccp

2

1 − K2xrccp
2 ln xrccp

2 + �xrccp
2

c3

2xrccp

= −
1

3
�A/4�c�−1/2�rccp

−5/6. �24�

Substituting Eq. �23� in the last equation we obtain 
 in
terms of �, namely,

− 
xrccp
2 = 3 + 2K1xrccp − �A/4��−1/22

3

xrccp
1/3 �1 − K2xrccp

2 ln xrccp
2 + �xrccp

2 � . �25�

Now substituting Eq. �25� in Eq. �23� we arrive at

�xrccp
3 = 2 + K1xrccp − �A/4��−1/22

3

xrccp
1/3 �1 − K2xrccp

2 ln xrccp
2 + �xrccp

2 � . �26�

Introducing Eqs. �25� and �26� in Eq. �22�, we get

	0B
−1/2�x� = 1 + K1x + �x/xrccp�2
− 3 − 2K1xrccp� + �x/xrccp�3


2 + K1xrccp� + �A/4��−1/22

3
xrccp

1/3 �1 − K2xrccp
2

ln xrccp
2 + �xrccp

2 �
�x/xrccp�2 − �x/xrccp�3��
�1 − K2x2 ln x2 + �x2�−1 �27�

from which after some algebra one obtains a single equation
for �, namely,

�	0B
−1/2��,A,x���1 − K2x2 ln x2� − 1 − K1x + �x/xrccp�2


3 + 2K1xrccp� − �A/4��−1/22

3
xrccp

1/3 �1 − K2xrccp
2 ln xrccp

2 �


�x/xrccp�2 − �x/xrccp�3� − �x/xrccp�3
2 + K1xrccp�

= ��xrccp
2 �A/4��−1/22

3
xrccp

1/3 ��x/xrccp�2 − �x/xrccp�3�

− x2�	0B
−1/2��,A,x��� , �28�

where we have explicitly written the dependence of 	0B
−1/2�x�

on � and A. To determine � from the DMC �29� and/or
GFMC data we must calculate the values �i

DMC �from Eq.
�28� after replacing 	0B

−1/2�� ,A ,x� by the 	0−DMC
−1/2 �xi

DMC� ob-
tained from Eq. �19� as �2��2�cN /Em�1/2 with E /N the
energy from DMC calculations� for each xi

DMC for i
=1,2 , . . .N values, and then minimizes �i=1

N ��i
DMC−��2 by

imposing

d

d�
�
i=1

N

��i
DMC − ��2 = 0,

which gives

� = �
i=1

N

�i
DMC/N .

Since the fluid branch GFMC data are a subset of DMC data,
we have used these to calculate � here, determining A in the
next step. For residue A fixed at 22/3�2�15.667 as described
below Eq. �5�, we obtain an optimal ��114.282 which from
Eqs. �25� and �26� leads to 
�74.0891 and ��−65.9475.
The curve then corresponding to Eq. �22� is labeled B1 in
Fig. 1.

Alternatively, if we allow the residue A to be free one
may ask for a solution minimizing �i=1

N �	0−DMC
−1/2 �xi

DMC�
−	0B

−1/2�� ,A ,xi
DMC��2 with respect � and A, i.e.,

d

d�
�
i=1

N

�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��2

= − �
i=1

N

2�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��


d

d�
	0B

−1/2��,A,xi
DMC� = 0

or

ρ/ρ0

(2
π

2 ρ
cN

/m
E

)1/
2

0.0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0

B1

B2

DMC
GFMC fluid
GFMC crystal

FIG. 1. The quantity 	0
−1/2=�2��2�cN /mE= �1

− �� /�0�1/3��1+b�� /�0�1/3 as a function of x /x0 for boson hard
sphere systems: B1 and B2 refer to Eqs. �22� and �24� with A
�15.7 and A�11.9, respectively. Larger dots are GFMC fluid data
and smaller dots refer to DMC �fluid� calculations.
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�
i=1

N

2�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��
− Y��,A,xi�x2 + �A/4��−1/22

3
xrccp

1/3 xrccp
2 ��x/xrccp�2 − �x/xrccp�3�

1 − K2x2 ln x2 + �x2 = 0 �29�

as well as of

d

dA
�
i=1

N

�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��2 = − �
i=1

N

2�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��
d

dA
	0B

−1/2��,A,xi
DMC� = 0

or

�
i=1

N

2�	0−DMC
−1/2 �xi

DMC� − 	0B
−1/2��,A,xi

DMC��
�A/4��−3/2�1/12��xrccp

1/3 �1 − K2xrccp
2 ln xrccp

2 + �xrccp
2 ���x/xrccp�2 − �x/xrccp�3�

1 − K2x2 ln x2 + �x2 = 0.

�30�

Under the two conditions �29� and �30� we find an optimal
A�11.8715 and an optimal ��169.516, leading to 

�124.1 and ��−111.296. This procedure gives the curve
labeled B2 in Fig. 1. Note that the residue 11.8715 is now
being associated with the random closest close-packing
�rccp� density 0.86�0 of hard spheres. This value of A is
somewhat smaller than the residue 15.667 at regular close-
packing density �0, though still within the rigorous range
stated in Eq. �4�.

Figure 2 compares the previous fluid branch expression
XI �x�, Eq. �17� of Ref. �24�, with the present extrapolant
�22� labeled B2, both as full curves. The dashed curve is the
modified London �ML� formula �1� that connects smoothly
with the crystalline branch. Open circles and squares are
GFMC data for fluid and crystalline branches, respectively.
Dots represent DMC �29� data spanning a wider range of

densities in the fluid region than the GFMC data. The new
expression B2 shows dramatically better agreement with
DMC data for intermediate densities, as well as agreeing
well with both DMC and GFMC data around the freezing
transition mentioned in Table I of Ref. �12�. Figure 3 is an
enlargement of Fig. 2 at low densities to show the remark-
able agreement of B2 with the DMC data.

IV. FERMION HARD-SPHERE FLUID BRANCH

The ground-state energy per particle for fermion hard-
sphere fluids �11� can be written as

E/N =
3

5

�2kF
2

2m
e0�x�, x � kFc �31�

with

e0�x� � 1 + C1x + C2x2 + �C3/3 + C4/3 + C5�x3 + C6x4 ln x

+ �C7/3 − C8/3 + C9�x4 + o�x4� �32�

for x�kFc�1, ��N /�=�kF
3 /6�2 being the number of fer-

XI

ML

ρ/ρ0

(2
π

2 ρ
cN

/m
E

)1/
2

0.0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0

B2

FIG. 2. The quantity 	0
−1/2=�2��2�cN /mE= �1

− �� /�0�1/3��1+b�� /�0�1/3 as a function of � /�0 for the boson hard-
sphere system: XI is the fluid branch approximant of Ref. �24�, Fig.
2; B2 refers to Eqs. �22� and �24� with A�11.9; ML is the modified
London formula �1�. Open circles and squares are GFMC data for
the fluid and crystalline branches, respectively, and dots are DMC
data points.

XI

ML

ρ/ρ0

(2
π

2 ρ
cN

/m
E

)1/
2
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0.8
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B2

FIG. 3. Enlargement of Fig. 2 at low densities.
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mions N in the enclosed volume �. We shall examine both
�=2 �corresponding to liquid 3He and neutron matter� and
�=4 �corresponding to nuclear matter�.

A. Fermions with �=2

For �=2, C6=0 �17� so that Eq. �32� simplifies to the pure
power series

e0�x� = 1 + D1x + D2x2 + D3x3 + D4x4 + o�x4� , �33�

where the Ci’s have been determined in terms of the Di’s. As
in the boson case, instead of e0�x� we consider the series

e0
−1/2�x� = 1 + F1x + F2x2 + F3x3 + F4x4 + F5x5 + o�x5� ,

�34�

where the Fi’s depend algebraically on the Di’s in a simple
manner, F5 being unknown. Values of Di and Fi are given in
Table II. We use this simple power series to construct the
usual Padé extrapolants. The approximants to Eq. �34� with
four terms beyond the trivial unity were analyzed in Ref.
�30�, where it was concluded that the best approximant was
the Padé �0/4��x�. However, this function does not have a
zero in the region of physical interest, i.e., 0�� /�0�1,
which implies 0�x�kFc�3.47 since �=kF

3 /3�2. Accord-
ingly, the energy does not manifest a close-packing density
as it should. This deficiency made it advisable to introduce
the fifth term F5x5 in Eq. �34�. Although in Fig. 1 of Ref.
�31� only five of the six two-point Padé approximants
�L / /M��x� with L+M =5 are shown, all six approximants
were analyzed here to adjust F5 so as to ensure a zero asso-
ciated with a random close-packing in the physical region.
The approximant 	0�x� and the position of its zero were cho-
sen in such way that the QTPT applied in Ref. �30� to cal-
culate the ground-state energy of 3He with the Aziz inter-
atomic potential �32� reproduces the corresponding GFMC
�34� data. �In this treatment, the Aziz potential was decom-
posed via the well-known Barker-Henderson �BH� �33�
scheme as described in Ref. �30�.� Eventually, the best ex-
trapolant was found to be the two-point Padé approximant

e0
−1/2�x� � �3//2��x� �

N0 + N1x + N2x2 + N3x3

M0 + M1x + M2x2 � 	0
−1/2�x� ,

�35�

where

N0 = F2F4 − F3
2,

N1 = F4�F3 + F1F2� − F2F5 − F1F3
2,

N2 = �F3 − F1F2�F5 − F4
2 + �F1F3 + F2

2�F4 − F2F3
2,

N3 = �F1F3 − F2
2�F5 − F1F4

2 + 2F2F3F4 − F3
3,

M0 = F2F4 − F3
2, M1 = F3F4 − F2F5, M2 = F3F5 − F4

2.

The extrapolant �35� satisfies �3/ /2��x=3.13�=0. Hence the
ground-state energy per fermion for �=2 becomes

E/N �
3

5

�2kF
2

2m

�3//2��x��−2 �36�

with a random closest close-packing density �rccp /�0
=0.732 only 15% smaller than the empirical �26� value
�rccp /�0�0.86. The coefficient F5 is listed in Table II in
quotation marks. In Fig. 4 we show the expression

	0
−1/2 = �3�2�6�2�/��2/3N/10mE�1/2

= 1 + �20��� − 1�/3���21/4�/6�2�2/3


���/�0�−1/3 − 1�2���/�0�−1/3 − b������/�0�2/3�−1

�37�

as a function of � /�0 for fermion hard spheres. Here b��� is
as defined in Eq. �6�. For �=2 the fluid branch �3/ /2� �full
curve� given by Eq. �35� is close to the ladder �35� �open
squares�, the variational Fermi hypernetted chain �VFHNC�
�36� �plus-sign marks�, and the so-called L-expansion data

FIG. 4. The expression �37� as a function of � /�0 for fermion
hard spheres with �=2 labeled �3//2� and with �=4 labeled XII �full
curves�. Dashed curves are the corresponding modified London
ML� formulas, but note that the ML2 dashed curve almost coincides
with the full curve �3//2�.

TABLE II. Coefficients Di and Fi for �=2 appearing in Eqs. �33� and �34�, respectively. Numbers in
quotation marks were determined as indicated in text.

�=2 i=1 2 3 4 5

Di 0.353678 0.185537 0.384145 −0.024700 “−0.265544”

Fi −0.176833 −0.045863 −0.156677 0.109672 “0.130830”
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�37,38� �open triangles�. Figure 4 shows good agreement
over the entire range of available data.

In order to improve the many-fermion ground-state en-
ergy equation of state we include the next term in Eq. �34�,
i.e., F6x6, which is then used to generate all Padé approxi-
mants of order six to the series 	0

−1/2�x�. The lack of a loga-
rithmic term x4 ln x is due to the Pauli principle �17�. Such a
term arises when there are three independent hole lines. But
for �=2 there can be at most two lines of the same spin. Thus
the Pauli principle reduces the size of the term by a factor of
the density. We thus expect the first such term for �=2 to be
O�x7 ln x�. The unknown coefficients F6 and F5 are deter-
mined from the two double-pole conditions �13� and �14�,
which become

	0
−1/2�x� →

�→�rccp

�1 − x/xrccp��5A/3�3�2�2/3�−1/2 �38�

and

	0�x� +
x

2

d	0�x�
dx

→
�→�rccp

5A/3�3�2�2/3

�1 − x/xrccp�3 �39�

with A�15.667.
For each Padé approximant of order 6 we determined F6

and F5 as shown in Table III. Approximants �4/2� and �0/6�

did not exhibit the double-pole conditions. The other four
approximants are plotted in Fig. 5 together with the ladder
�35� �open squares�, the variational Fermi hypernetted chain
�VFHNC� �36� �plus-sign marks�, and the L-expansion �37�
�open triangles� data for �=2, from which we conclude that
the approximant �3/3��x� is the best. Figure 6 is a semilog
enlargement of Fig. 5. In Fig. 7 we compare both the new
improved expression �3/3��x� and the previous best energy
expression, i.e., the two-point Padé approximant �3/ /2��x�
reported in Ref. �24� and supported by ladder, VFHNC, and
L-expansion data.

B. Fermions with �=4

For fermions with �=4 Eq. �32� becomes

e0�x� = 1 + D1x + D2x2 + D3x3 + D4x4 ln x + D5x4 + o�x4�
�40�

for x�kFc�1 and we recall that �=�kF
3 /6�2. As for bosons

or for fermions with �=2, we analyze

TABLE III. The F5 and F6 coefficients for �=2 that follow from
conditions �38� and �39� for all sixth-order Padé approximants with
residue A�15.667 and random closest close-packing density �rccp

�0.86�0.

Padé F5 F6

�5/1� −0.0272548 0.0038205

�4/2� −0.20 no solution

�3/3� −0.0130625 0.0039120

�2/4� −0.0395076 0.0415222

�1/5� −0.0115902 0.01887153

�0/6� −0.1276 no solution

FIG. 5. Improved extrapolants for the many-fermion hard-
sphere gas with �=2.

FIG. 6. Enlargement of Fig. 5 at low densities.

FIG. 7. Comparison of quantity �37� as a function of � /�0 for
many-fermion hard spheres with �=2, for the previously best ap-
proximant �3/ /2��x� �24� and the new improved one �3/3��x�, full
curves. Dashed curve is modified London formula.
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e0
−1/2�x� = 1 + F1x + F2x2 + F3x3 + F4x4 ln x + F5x4 + o�x4�

�41�

with all Fi �i=1,2 ,3 ,4� known. Values of Di and Fi are
given in Table IV. Unlike the �=2 case, this series is not a
pure power series as it contains logarithmic terms. Its so-
called “tailing” �21� approximants are given in Table III of
Ref. �28�. Of all the possible approximants using only the
known coefficients, only the forms II and XII are free from
flaws and have residues within the bounds �4�. Of these two
forms, form II has a residue less than that predicted in Ref.
�7�. Hence we chose form XII, which is plotted in Fig. 4 as
the full curve labeled XII.

In this case E /N can be written as

E/N =
3�2kF

2

10m
	0�x� , �42�

where the series �41� is represented as

e0
−1/2�x� � XII�x� �

1 + �F1 − F3/F2�x + �F2 − F1F3/F2�x2

1 − �F3/F2�x − F4x4 ln x

� 	0
−1/2�x� .

We also plot the corresponding VFHNC data �plus-sign
marks� and L-expansion data �open triangles�. In terms of
energy, our results are slightly below the VFHNC points,
with agreement improving at lower densities. On the other
hand, the XII approximant lies just above the L-expansion
data over the range of densities where data are available.

In order to improve the �=4 many-fermion hard-sphere
ground-state energy equation of state, the energy series �11�
was written as

E

N
−

3

5

�2kF
2

2m
=

3

5

�2kF
3c

2m
e0�x� =

3

5

�2kF
3c

2m
�D1 + D2x + D3x2

+ D4x3 ln x + D5x3 + D6x4 ln x + D7x4 + ¯ � ,

�43�

where x=kFc and �=�kF
3 /6�2. The suggested representation

for e0�x� here is

e0�x� = D1 + D2x + D3x2 + D4x3 ln x + D5x3

+ D6x4 ln x + D7x4 + ¯ �44�

which leads to

e0�x�−1/2 = F1 + F2x + F3x2 + F4x3 ln x + F5x3

+ F6x4 ln x + F7x4 + ¯ �45�

with D1 to D4 known and equal to the values given in Table
IV. The coefficients F1–F4 are different from those in Table

IV, but they are derived simply from the Di’s and so are also
known. They are

F1 = 1/�D1; F2 = − D2/2D1
3/2;

F3 = �3D2
2 − 4D1D3�/8D1

5/2; F4 = − 8D1
2D4/16D1

7/2;

F5 = �− 5D2
3 + 12D1D2D3 − 8D1

2D5�/16D1
7/2;

F6 = 32D1
2�3D2D4 − 2D1D6�/128D1

9/2.

We have also investigated the representation

	0
−1/2�x� =

F1 + F2x + F3x2 + bx3

1 − �F4/F1�x3 ln x + ax3

for which the two double-pole conditions �13� and �14� im-
ply that

b = − xrccp
−3 �F1 + F2xrccp + F3xrccp

2 �

and

F2 + 2F3xrccp + 3bxrccp
2

= − � 3

5xrccp
	1/2� 3

��
	1/31 −

F4

F1
xrccp ln xrccp + axrccp

3 � .

The values of a and b so determined are −0.092 488 3 and
0.171 942, respectively. This representation is unsatisfactory
because it has what applied mathematicians call a “defect.”
Unfortunately it is in the physical region 0�x�xrccp. The
problem is not uncommon and stems from a pole and a zero
lying very close to each other.

V. CONCLUSIONS

Based on known terms of field-theoretic perturbative low-
density expansions we have constructed closed-form analyti-
cal expressions as functions of particle density using Padé
and other approximants for the energy per particle of the
fluid branches of both many-boson and many-fermion quan-
tum hard-sphere systems. Improvements with respect to pre-
vious work �notably but not exclusively that of Ref. �24��
have been achieved by assuming �i� that the classical random
closest close-packing hard-sphere densities are the ultimate
fluid densities at which the energy diverges with a second-
order pole, and �ii� proposing and imposing a value for the
residue at the pole that is the same for either bosons or fer-
mions as closest close-packing is approached and the hard
spheres become distinguishable. Implementing these two
conditions and taking advantage of recent diffusion Monte
Carlo simulation data has allowed us to incorporate an addi-
tional term in the low-density expansion beyond that em-
ployed in Ref. �24�. The resulting determination of the best
approximants has produced decidedly improved results for
bosons as well as for two-component fermions, but not for
four-component fermions.

TABLE IV. Coefficients Di and Fi for �=4 appearing in Eqs.
�40� and �41�, respectively.

�=4 i=1 2 3 4

Di 1.061033 0.556610 1.300620 −1.408598

Fi −0.530517 0.143867 −0.5806558 −0.704299
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